

Contents

	txaio
	Platform support

	How it works

	Overview
	Brief History

	Overview by Example

	Restrictions and Caveats

	Futures and Deferreds

	Callbacks and Errbacks

	Error Handling

	Real Examples

	Cross-API Magic

	Programming Guide
	Explict Event Loops

	Logging

	Logging Interoperability

	Starting Logging Yourself

	txio releases
	master

	18.8.1

	18.7.1

	2.10.0

	2.9.0

	2.8.2

	2.8.1

	2.8.0

	2.7.1

	2.7.0

	2.6.1

	2.6.0

	2.5.2

	2.5.1

	2.5.0

	2.4.0

	2.3.1

	2.3.0

	previous releases

	API
	Explicitly Selecting a Framework

	Set an Event Loop / Reactor

	Test Helpers

	txaio module

txaio

[image: Version] [https://pypi.python.org/pypi/txaio] [image: Build Status] [https://travis-ci.org/crossbario/txaio] [image: Coverage] [https://codecov.io/github/crossbario/txaio] [image: Docs] [https://txaio.readthedocs.io/en/latest/]

txaio is a helper library for writing code that runs unmodified on
both Twisted [https://twistedmatrix.com/] and asyncio [https://docs.python.org/3/library/asyncio.html] / Trollius [http://trollius.readthedocs.org/en/latest/index.html].

This is like six [http://pythonhosted.org/six/], but for wrapping
over differences between Twisted and asyncio so one can write code
that runs unmodified on both (aka source code compatibility). In
other words: your users can choose if they want asyncio or Twisted
as a dependency.

Note that, with this approach, user code runs under the native event
loop of either Twisted or asyncio. This is different from attaching
either one’s event loop to the other using some event loop adapter.

Platform support

txaio runs on CPython 2.7/3.3+ and PyPy 2/3, on top of Twisted or asyncio. Specifically, txaio is tested on the following platforms:

Python 2:

	CPython 2.7 on Twisted 12.1, 13.2, 15.4, 16.5, trunk and on Trollius 2.0

	PyPy 2 on Twisted 12.1, 13.2, 15.4, 16.5, trunk and on Trollius 2.0

Python 3:

	CPython 3.4 on Twisted 15.4, 16.5, trunk and on asyncio (stdlib)

	CPython 3.5 on Twisted 15.4, 16.5, trunk and on asyncio (stdlib)

	CPython 3.6 on Twisted 15.4, 16.5, trunk and on asyncio (stdlib)

	PyPy 3 on Twisted 15.4, 16.5, trunk and on asyncio (stdlib)

How it works

Instead of directly importing, instantiating and using Deferred
(for Twisted) or Future (for asyncio) objects, txaio provides
helper-functions to do that for you, as well as associated things like
adding callbacks or errbacks.

This obviously changes the style of your code, but then you can choose
at runtime (or import time) which underlying event-loop to use. This
means you can write one code-base that can run on Twisted or
asyncio (without a Twisted dependency) as you or your users see fit.

Code like the following can then run on either system:

import txaio
txaio.use_twisted() # or .use_asyncio()

f0 = txaio.create_future()
f1 = txaio.as_future(some_func, 1, 2, key='word')
txaio.add_callbacks(f0, callback, errback)
txaio.add_callbacks(f1, callback, errback)
...
txaio.resolve(f0, "value")
txaio.reject(f1, RuntimeError("it failed"))

Please refer to the documentation [https://txaio.readthedocs.io/en/latest/] for description and usage of the library features.

Overview

Brief History

This library has been factored out of the Autobahn|Python [http://autobahn.ws/python/] WAMP client
library. The ApplicationSession object from that project therefore
serves as a good example of how to use this library in a complex
use-case.

We are releasing it in the hopes these utilities are useful on their
own to other projects using event-based Python. Only authors of
“library style” code are likely to be interested in this – new
application code should use your favourite Python asynchronous I/O
platform.

Overview by Example

The simplest way to use txaio is to import txaio and use the
helper functions directly. You must select the framework you wish to
use by calling txaio.use_twisted() or txaio.use_asyncio()
(which means asyncio, or trollius/tuplip if asyncio import fails).

Note that to use this library successfully you shouldn’t call
methods on futures – use only txaio methods to operate on them.

import txaio
txaio.use_twisted() # or .use_asyncio()

def cb(value):
 print("Callback:", value)

def eb(fail):
 # fail will implement txaio.IFailedFuture
 print("Errback:", txaio.failure_message(fail))
 print(txaio.failure_formatted_traceback(fail))

f = txaio.create_future()
txaio.add_callbacks(f, cb, eb)

...other things happen...

try:
 answer = do_something()
 fail = None
except Exception:
 fail = txaio.create_failure()

the point here is that you "somehow" arrange to call either
reject() or resolve() on every future you've created.

if fail:
 txaio.reject(f, fail)
else:
 txaio.resolve(f, answer)

Restrictions and Caveats

txaio is not a new event-based programming solution. It is not a
complete box-set of asynchronous programming tools.

It is one piece that can help library authors to write
cross-event-loop asynchronous code. For example, you’ll note that
there’s no way to run “the event loop” – that’s up to you.

There is no support for @coroutine or @inlineCallbacks
decorators. This is not possible, as asyncio under Python3 introduced
a new syntax (yield from) to call into other co-routines. So, you
are stuck with “callback style” code for your cross-platform
library. (Note that users of your library can of course use new
Python3 features like yield from, async and await in their
own code – but they do so by explicitly choosing “Python3 and
asyncio” as their platform).

txaio is basically a “lowest common denominator” tool. There is a
minimum of wrapping, etcetera but the library author doesn’t get to
use fancy features (e.g. @inlineCallbacks, mutation of returns,
@coroutine) of the underlying async platforms.

Futures and Deferreds

In most cases asyncio is trying to be “as thin as possible” wrapper
around the different APIs. So, there’s nothing wrapping Future or
Deferred – you get the bare objects. This means that
txaio.create_future() returns you the native object, which
you then pass to txaio.add_callbacks()

Similarly, txaio.call_later() returns the underlying object
(IDelayedCall in Twisted or a Handle in asyncio). These both
have a cancel() method, but little else in common.

Callbacks and Errbacks

Twisted and asyncio have made different design-decisions. One that
stands out is callbacks, and callback chaining. In Twisted, the return
value from an earlier callback is what gets passed to the next
callback. Similarly, errbacks in Twisted can cancel the error. There
are not equivalent facilities in asyncio: if you add multiple
callbacks, they all get the same value (or exception).

When using txaio, don’t depend on chaining. This means that
your callback and errback methods must always return their
input argument so that Twisted works if you add multiple callbacks
or errbacks (and doesn’t unexpectedly cancel errors).

txaio does add the concept of an errback for handling errors
(a concept asyncio does not have) and therefore adds one helper to
encapsulate exceptions (similar to Twisted’s Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] object) which
only exists in the asyncio implementation.

There is no inlineCallbacks or coroutine decorator
support. Don’t use these.

Error Handling

In your errback, you will receive a single arg which is an
instance conforming to IFailedFuture. This interface has only a
single attribute: .value, which is the Exception instance which
caused the error. You can also use txaio.failure_* methods to
operate on an IFailedFuture:

	txaio.failure_message: returns a unicode error-message

	txaio.failure_traceback: returns a traceback object

	txaio.failure_formatted_traceback: returns a unicode formatted stack-trace

You should not depend on any other attributes or methods of the
instance you’re given.

Real Examples

You are encouraged to look at Autobahn|Python [http://autobahn.ws/python/] for an example of a
system that can run on both Twisted and asyncio. In particular, look
at the difference between autobahn/twisted/websocket.py and
autobahn/asyncio/websocket.py and the compatibility super-class in
autobahn/wamp/protocol.py which is the piece that uses txaio
to provide an event-loop agnostic implementation that both the Twisted
and asyncio concrete ApplicationSession objects inherit from.

autobahn.wamp.protocol.ApplicationSession is glued to a particular
event-loop via autobahn.twisted.wamp.ApplicationSession which
takes advantage of txaio.tx.LoopMixin to provide the
helpers-methods attached to self.

In this manner, code in the generic implementation simply always calls
txaio methods via self.create_future() or similar and users of
Autobahn|Python [http://autobahn.ws/python/] can choose between asyncio and Twisted as they prefer
by either from autobahn.twisted.wamp import ApplicationSession or
from autobahn.asyncio.wamp import ApplicationSession

Cross-API Magic

If you wish to write Twisted-like code that uses asyncio as its
event-loop, you should look at txtulip [https://github.com/itamarst/txtulip]. I do not know of a project
that lets you write asyncio-like code that runs on Twisted’s
event-loop.

Programming Guide

This section is a work in progress and suggestions are welcome.

Explict Event Loops

Twisted has a single, global reactor (for now). As such, txaio was built with a single, global (but configurable) event-loop. However, asyncio supports multiple event-loops.

After version 2.7.0 it is possible to use txaio with multiple event-loops, and thereby offer asyncio users the chance to pass one. Of course, it’s still not possible to use multiple event-loops at once with Twisted.

To start using multiple event-loops with txaio, use txaio.with_config() to return a new “instance” of the txaio API with the given config (the only thing you can configure currently is the event-loop). On Twisted, it’s an error if you try to use a different reactor.

The object returned by txaio.with_config() is a drop-in replacement for every txaio.* call, so you can go from code like this:

import txaio
f = txaio.create_future()

…and instead make your code do look like this:

import asyncio
import txaio
txa = txaio.with_config(loop=asyncio.new_event_loop())
f = txa.create_future()

If you’re doing this inside a class, you could use self._txa or similar instead. This gives you an easy path to opt-in to this multiple event-loop API:

	replace all txaio.* calls to use an object, like self._txa.

	assign this to the txaio module (self._txa = txaio) or use
the new API right away (self._txa = txaio.with_config())

	add a public API to your library to pass in an event loop

	when this is used, you set self._txa = txaio.with_config(loop=loop)

See the example in examples/multiloop.py.

Logging

If you are developing a new application, you can take advantage of more structured logging by using txaio’s APIs throughout. This API is similar to Twisted’s logging [https://twistedmatrix.com/documents/current/core/howto/logger.html] in many ways, but not identical. If you’re integrating txaio into existing code, it should “play nicely” with the logging module, Twisted’s newest logger, and the pre-15.2.0 “legacy” Twisted logger.

To create an object suitable for logging, call txaio.make_logger(). This will return an instance which has a series of methods indicating the “severity” or “level” of the log – see txaio.interfaces.ILogger for an example and more details.

So, given some code like:

import txaio
txaio.use_twisted()

class Bunny(object):
 log = txaio.make_logger()

 def hop(self, times=1):
 self.log.trace("Bunny.hop(times={times})", times=times)
 self.log.debug("Hopping {times} times.", times=times)
 try:
 1 / 0
 except Exception:
 fail = txaio.create_failure()
 self.log.critical(txaio.failure_format_traceback(fail))

print("output before start_logging")
txaio.start_logging(level='debug')
print("output after start_logging")
jack = Bunny()
jack.hop(42)

Then you should see output approximately like this:

output before start_logging
2016-01-21T01:02:03-0100 output after start_logging
2016-01-21T01:02:03-0100 Hopping 42 times.
2016-01-21T01:02:03-0100 Traceback (most recent call last):
 File "logging-example.py", line 21, in <module>
 jack.hop(42)
--- <exception caught here> ---
 File "logging-example.py", line 12, in hop
 raise RuntimeError("Fox spotted!")
exceptions.RuntimeError: Fox spotted!

Note that the trace-level message wasn’t logged. If you don’t like to see full tracebacks except with debugging, you can use this idiom:

self.log.critical(txaio.failure_message(fail))
self.log.debug(txaio.failure_format_traceback(fail))

It’s worth noting the code doesn’t change at all if you do .use_asyncio() at the top instead – of course this is the whole point of txaio!

Logging Interoperability

When you’re using libraries that are already doing logging, but not using the txaio APIs, you shouldn’t need to do anything. For example:

import txaio
txaio.use_twisted()

def existing_code():
 from twisted.python import log
 log.msg("A legacy Twisted logger message")

txaio.start_logging(level='debug')
existing_code()

If you’re using asyncio (or just built-in Python logging), it could look like this:

import txaio
txaio.use_asyncio()

def existing_code():
 import logging
 log = logging.getLogger("roy")
 log.info("Python stdlib message: %s", "txaio was here")

txaio.start_logging(level='debug')
existing_code()

Starting Logging Yourself

If you are already starting your favourite logging system yourself (be that Twiste’d logger via globalLogBeginner or Python stdlib logging), any library using txaio’s logging should play nicely with it. Not ever calling txaio.start_logging() has a slight drawback, however: as part of setting up logging, we re-bind all the “unused” logging methods to do-nothing. For example, if the log level is set to 'info' than the .debug method on all txaio-created logger instances becomes a no-op.

For fully-worked examples of this, look in examples/log_interop_stdlib.py and examples/log_interop_twisted.py.

txio releases

master

	…

18.8.1

	add API to support cancellation; this means passing a 1-argument
callable to create_future and txaio.cancel to actually
cancel a future

	support Python 3.7 (CI / testing added)

18.7.1

	move to calver

	deprecate Python 3.3 support and CI testing

2.10.0

	the asyncio version of make_logger now deduces a proper
namespace instead of using the root (thanks spr0cketeer [https://github.com/spr0cketeer])

2.9.0

	March 2, 2018

2.8.2

	September 4, 2017

	fix: no longer install LICENSE file into installation directory (conflicts!)

2.8.1

	July 21, 2017

	fix: the asyncio version of sleep() correctly returns a Future instance

2.8.0

	June 8, 2017

	fix: asyncio - remove the hacks for “simulating” chained futures (no longer works - cpy36 has native code for future)

	new: run CI on Python 3.5 and 3.6

2.7.1

	May 1, 2017

	asyncio: example and docs for running multiple loops

	asyncio: log exception tracebacks when they’re available for error-message

2.7.0

	April 15, 2017

	allow alternate asyncio loops

	new future creation API for alternate loops

2.6.1

	February 9, 2017

	added inline sleep helper (Twisted only for now)

2.6.0

	December 29, 2016

	avoid giving negative times to callLater with batched timers (issue #81)

2.5.2

	November 6, 2016

	fix pytest3/2

	fix Sphinx 1.4+ doc building

	Copyrights transferred from Tavendo to Crossbar.io Technologies

2.5.1

	April 28, 2016

	Bug with make_batched_timer remembering (via a closure) the
reactor/event-loop too persistantly

2.5.0

	April 28, 2016

	Document that @coroutine and @inlineCallbacks are not supported

	Objects returned from the txaio.make_batched_timer() API now
have millisecond resolution and spread out their notifications over
the entire range of the bucket.

2.4.0

	April 22, 2016

	Added txaio.make_batched_timer() API. The main use-case for
this is when you have lots of of timers, but their exact resolution
isn’t important; batching them into buckets causes far fewer
delayed call instances to be outstanding in the underlying
event-loop/reactor.

2.3.1

	April 10, 2016

	added universal wheels

2.3.0

	April 9, 2016

	More logging infrastructure and APIs to support moving all of
Crossbar.io’s logging to txaio.

previous releases

	We didn’t produce any release notes prior to 2.4.0

	Instead of making up summaries of all previous releases after the
fact, you will have to do something like git log v1.1.0..v2.0.0
to see what changed between releases. If you do make a summary,
pull-requests are welcome!

API

The API is identical whether you’re using Twisted or asyncio under the
hood. Two bool variables are available if you need to know which
framework is in use, and two helpers to enforce one or the other framework.

Explicitly Selecting a Framework

Until you explicitly select a framework, all txaio API methods just
throw a usage error. So, you must call .use_twisted() or
.use_asyncio() as appropriate. These will fail with
ImportError if you don’t have the correct dependencies.

import txaio
txaio.use_twisted()
txaio.use_asyncio()

Set an Event Loop / Reactor

You can set txaio.config.loop to either an EventLoop instance (if
using asyncio) or an explicit reactor (if using Twisted). By default,
reactor is imported from twisted.internet on the first
call_later invocation. For asyncio, asyncio.get_event_loop()
is called at import time.

If you’ve installed your reactor before import txaio you shouldn’t
need to do anything.

Note that under Twisted, only the IReactorTime [https://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.IReactorTime.html] interface is
required.

Test Helpers

Test utilities are in txaio.testutil. There is a context-manager
for testing delayed calls; see test_call_later.py for an example.

	
txaio.testutil.replace_loop(new_loop)

	This is a context-manager that sets the txaio event-loop to the
one supplied temporarily. It’s up to you to ensure you pass an
event_loop or a reactor instance depending upon asyncio/Twisted.

Use like so:

from twisted.internet import task
with replace_loop(task.Clock()) as fake_reactor:
 f = txaio.call_later(5, foo)
 fake_reactor.advance(10)
 # ...etc

txaio module

	
txaio.using_twisted

	True only if we’re using Twisted as our underlying event framework

	
txaio.using_asyncio

	True only if we’re using asyncio as our underlying event framework

	
txaio.use_asyncio()

	Select asyncio framework (uses trollius/tulip on Pythons that lack asyncio).

	
txaio.use_twisted()

	Select the Twisted framework (will fail if Twisted is not installed).

	
txaio.create_future(result=None, error=None, canceller=None)

	Create and return a new framework-specific future object. On
asyncio this returns a Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future], on Twisted it returns a
Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html].

	Parameters

	
	result – if not None, the future is already fulfilled,
with the given result.

	error (class:IFailedFuture or Exception) – if not None then the future is already failed,
with the given error.

	canceller – a single-argument callable which is invoked if
this future is cancelled (the single argument is the future
object which has been cancelled)

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if both value and error are provided.

	Returns

	under Twisted a Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html], under asyncio a Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future]

	
txaio.as_future(func, *args, **kwargs)

	Call func with the provided arguments and keyword arguments,
and always return a Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future]/Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]. If func itself
returns a future, that is directly returned. If it immediately
succeed or failed then an already-resolved Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future]/Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]
is returned instead.

This allows you to write code that calls functions (e.g. possibly
provided from user-code) and treat them uniformly. For example:

p = txaio.as_future(some_function, 1, 2, key='word')
txaio.add_callbacks(p, do_something, it_failed)

You therefore don’t have to worry if the underlying function was
itself asynchronous or not – your code always treats it as asynchronous.

	
txaio.reject(future, error=None)

	Resolve the given future as failed. This will call any errbacks
registered against this Future/Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]. On Twisted, the errback
is called with a bare Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance; on asyncio we provide
an object that implements IFailedFuture because there is no
equivalent in asyncio (this mimics part of the Failure API).

	Parameters

	
	future – an unresolved Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]/Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future] as returned by
create_future()

	error (IFailedFuture or Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – The error to fail the Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]/Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future] with. If this
is None, sys.exc_info() is used to create an
txaio.IFailedFuture (or Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html])
wrapping the current exception (so in this case it
must be called inside an except: clause).

	
txaio.cancel(future)

	Cancel the given future. If a canceller was registered, it is
invoked now. It is invalid to resolve or reject the future
after cancelling it.

	Parameters

	future – an unresolved Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]/Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future] as returned by
create_future()

	
txaio.resolve(future, value)

	Resolve the given future with the provided value. This triggers
any callbacks registered against this Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future]/Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html].

	
txaio.add_callbacks(future, callback, errback)

	Adds the provided callback and/or errback to the given future. To
add multiple callbacks, call this method multiple times. For
example, to add just an errback, call add_callbacks(p, None,
my_errback)

Note that txaio doesn’t do anything special with regards to
callback or errback chaining – it is highly recommended that you
always return the incoming argument unmodified in your
callback/errback so that Twisted and asyncio behave the same. For
example:

def callback_or_errback(value):
 # other code
 return value

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if both callback and errback are None

	
txaio.failure_message(fail)

	Takes an txaio.IFailedFuture instance and returns a
formatted message suitable to show to a user. This will be a
str with no newlines for the form: {exception_name}:
{error_message} where error_message is the result of running
str() on the exception instance (under asyncio) or the result
of .getErrorMessage() on the Failure under Twisted.

	
txaio.failure_traceback(fail)

	Take an txaio.IFailedFuture instance and returns the
Python traceback instance associated with the failure.

	
failure_format_traceback(fail):

	Take an txaio.IFailedFuture instance and returns a
formatted string showing the traceback. Typically, this will have
many newlines in it and look like a “normal” Python traceback.

	
txaio.call_later(delay, func, *args, **kwargs)

	This calls the function func with the given parameters at the
specified time in the future. Although asyncio doesn’t directly
support kwargs with loop.call_later we wrap it in a
functools.partial, as asyncio documentation suggests.

Note: see txaio.make_batched_timer() if you may have a lot
of timers, and their absolute accuracy isn’t very important.

	Parameters

	delay – how many seconds in the future to make the call

	Returns

	The underlying library object, which will at least have
a .cancel() method on it. It’s really
IDelayedCall [https://twistedmatrix.com/documents/current/api/twisted.internet.interfaces.IDelayedCall.html] in Twisted and a Handle [https://docs.python.org/3.4/library/asyncio-eventloop.html#asyncio.Handle] in asyncio.

	
txaio.make_batched_timer(seconds_per_bucket, chunk_size)

	This returns an object implementing txaio.IBatchedTimer
such that any .call_later calls done through it (instead of
via txaio.call_later()) will be “quantized” into buckets and
processed in chunk_size batches “near” the time they are
supposed to fire. seconds_per_bucket is only accurate to
“milliseconds”.

When there are “tens of thousands” of outstanding timers, CPU
usage can become a problem – if the accuracy of the timers isn’t
very important, using “batched” timers can greatly reduce the
number of “real” delayed calls in the event loop.

For example, Autobahn uses this feature for auto-ping timeouts,
where the exact time of the event isn’t extremely important – but
there are 2 outstanding calls per connection.

	
txaio.gather(futures, consume_exceptions=True)

	Returns a new Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future] that waits for the results from all the
futures provided.

The Future [https://docs.python.org/3.4/library/asyncio-task.html#asyncio.Future]/Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] returned will callback with a list the
same length as futures containing either the return value from
each future, or an IFailedFuture/Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance if
it failed.

Note that on Twisted, we use DeferredList [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html] which usually
returns a list of 2-tuples of (status, value). We do inject a
callback that unpacks this list to be just the value (or
Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html]) so that your callback can be identical on Twisted and
asyncio.

	
txaio.make_logger()

	Creates and returns an instance of ILogger. This can pick
up context from where it’s instantiated (e.g. the containing class
or module) so the best way to use this is to create a logger for
each class that produces logs; see the example in
ILogger ‘s documentation

	
class txaio.interfaces.ILogger

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This defines the methods you can call on the object returned from
txaio.make_logger() – although the actual object may have
additional methods, you should only call the methods listed
here.

All the log methods have the same signature, they just differ in
what “log level” they represent to the handlers/emitters. The
message argument is a format string using PEP3101 [https://www.python.org/dev/peps/pep-3101/]-style references to
things from the kwargs. Note that there are also the following
keys added to the kwargs: log_time and log_level.

For example:

class MyThing(object):
 log = txaio.make_logger()

 def something_interesting(self, things=dict(one=1, two=2)):
 try:
 self.log.debug("Called with {things[one]}", things=things)
 result = self._method_call()
 self.log.info("Got '{result}'.", result=result)
 except Exception:
 fail = txaio.create_failure()
 self.log.critical(txaio.failure_format_traceback(fail))

The philsophy behind txaio’s interface is fairly similar to
Twisted’s logging APIs after version 15. See Twisted’s
documentation [http://twistedmatrix.com/documents/current/core/howto/logger.html]
for details.

	
critical(message, **kwargs)

	log a critical-level message

	
error(message, **kwargs)

	log a error-level message

	
warn(message, **kwargs)

	log a error-level message

	
info(message, **kwargs)

	log an info-level message

	
debug(message, **kwargs)

	log an debug-level message

	
trace(message, **kwargs)

	log a trace-level message

	
class txaio.interfaces.IFailedFuture

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This defines the interface for a common object encapsulating a
failure from either an asyncio task/coroutine or a Twisted
Deferred.

An instance implementing this interface is given to any
errback callables you provide via txaio.add_callbacks()

In your errback you can extract information from an IFailedFuture
with txaio.failure_message() and
txaio.failure_traceback() or use .value to get the
Exception instance.

Depending on other details or methods will probably cause
incompatibilities between asyncio and Twisted.

	
value

	An actual Exception instance. Same as the second item returned from
sys.exc_info()

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 txaio	

 	
 	
 txaio.testutil	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | R
 | T
 | U
 | V
 | W

A

 	
 	add_callbacks() (in module txaio)

 	
 	as_future() (in module txaio)

C

 	
 	call_later() (in module txaio)

 	cancel() (in module txaio)

 	
 	create_future() (in module txaio)

 	critical() (txaio.interfaces.ILogger method)

D

 	
 	debug() (txaio.interfaces.ILogger method)

E

 	
 	error() (txaio.interfaces.ILogger method)

F

 	
 	failure_message() (in module txaio)

 	
 	failure_traceback() (in module txaio)

G

 	
 	gather() (in module txaio)

I

 	
 	IFailedFuture (class in txaio.interfaces)

 	
 	ILogger (class in txaio.interfaces)

 	info() (txaio.interfaces.ILogger method)

M

 	
 	make_batched_timer() (in module txaio)

 	
 	make_logger() (in module txaio)

R

 	
 	reject() (in module txaio)

 	
 	replace_loop() (in module txaio.testutil)

 	resolve() (in module txaio)

T

 	
 	trace() (txaio.interfaces.ILogger method)

 	
 	txaio (module)

 	txaio.testutil (module)

U

 	
 	use_asyncio() (in module txaio)

 	use_twisted() (in module txaio)

 	
 	using_asyncio (in module txaio)

 	using_twisted (in module txaio)

V

 	
 	value (txaio.interfaces.IFailedFuture attribute)

W

 	
 	warn() (txaio.interfaces.ILogger method)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 txaio

 		
 Platform support

 		
 How it works

 		
 Overview

 		
 Brief History

 		
 Overview by Example

 		
 Restrictions and Caveats

 		
 Futures and Deferreds

 		
 Callbacks and Errbacks

 		
 Error Handling

 		
 Real Examples

 		
 Cross-API Magic

 		
 Programming Guide

 		
 Explict Event Loops

 		
 Logging

 		
 Logging Interoperability

 		
 Starting Logging Yourself

 		
 txio releases

 		
 master

 		
 18.8.1

 		
 18.7.1

 		
 2.10.0

 		
 2.9.0

 		
 2.8.2

 		
 2.8.1

 		
 2.8.0

 		
 2.7.1

 		
 2.7.0

 		
 2.6.1

 		
 2.6.0

 		
 2.5.2

 		
 2.5.1

 		
 2.5.0

 		
 2.4.0

 		
 2.3.1

 		
 2.3.0

 		
 previous releases

 		
 API

 		
 Explicitly Selecting a Framework

 		
 Set an Event Loop / Reactor

 		
 Test Helpers

 		
 txaio module

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

